Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Open Res Eur ; 3: 25, 2023.
Article in English | MEDLINE | ID: mdl-37645500

ABSTRACT

Background: Transforming food systems is necessary to address the global issues of severe biodiversity loss, hunger, and malnutrition as well as the consequences of the rapidly advancing climate change. Agroecology as a systemic approach has been recognised as a promising path of change exemplified in various case studies strengthening this transformation. The aim of this study is to get insight specifically for Austria and Germany in providing an overview of the advancement in agroecology in both countries and identify agroecology-related initiatives. Methods: 21 interviews with experts were conducted to determine the recognition, understanding, and development of agroecology in Austria and Germany in terms of movement, practice, policies, education, and research. In addition, information about agroecology-related initiatives was collected from interviews with 24 representatives of initiatives and literature analysis. Data was analysed according to five activity categories under which agroecology manifest: movement, practice, living lab, science and research infrastructure, and training and education. Results: Results show that the term agroecology is not commonly used in Austria and Germany, where the concept is mainly associated to a scientific discipline. Practices considered agroecological are implemented primarily through organic agriculture, which is very developed in Austria and to a lesser extent in Germany. Many networks, food policy councils, associations, and scientific projects related to agroecology exist, each with specific purposes and ambitions to change farming and food systems. While most selected initiatives do not explicitly refer to agroecology, all follow certain agroecological principles and aim at contributing to accelerate the agroecological transition. Conclusions: Clarifying the concept of agroecology, overcoming economic and political barriers as well as fostering participation of a multitude of stakeholders in the transition is essential for the future development of agroecology in Austria and Germany.

2.
Ecol Evol ; 13(3): e9889, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36950370

ABSTRACT

Environmental heterogeneity is an important driver of ecological communities. Here, we assessed the effects of local and landscape spatial environmental heterogeneity on ant community structure in temperate seminatural upland grasslands of Central Germany. We surveyed 33 grassland sites representing a gradient in elevation and landscape composition. Local environmental heterogeneity was measured in terms of variability of temperature and moisture within and between grasslands sites. Grassland management type (pasture vs. meadows) was additionally included as a local environmental heterogeneity measure. The complexity of habitat types in the surroundings of grassland sites was used as a measure of landscape environmental heterogeneity. As descriptors of ant community structure, we considered species composition in terms of nest density, community evenness, and functional response traits. We found that extensively grazed pastures and within-site heterogeneity in soil moisture at local scale, and a high diversity of land cover types at the landscape scale affected ant species composition by promoting higher nest densities of some species. Ant community evenness was high in wetter grasslands with low within-site variability in soil moisture and surrounded by a less diverse landscape. Fourth-corner models revealed that ant community structure response to environmental heterogeneity was mediated mainly by worker size, colony size, and life history traits related with colony reproduction and foundation. We discuss how within-site local variability in soil moisture and low-intensity grazing promote ant species densities and highlight the role of habitat temperature and humidity affecting community evenness. We hypothesize that a higher diversity of land cover types in a forest-dominated landscape buffers less favorable environmental conditions for ant species establishment and dispersal between grasslands. We conclude that spatial environmental heterogeneity at local and landscape scale plays an important role as deterministic force in filtering ant species and, along with neutral processes (e.g., stochastic colonization), in shaping ant community structure in temperate seminatural upland grasslands.

3.
Ecol Indic ; 146: 109866, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36777177

ABSTRACT

Extensively managed grasslands are globally recognized for their high biodiversity value. Over the past century, a continuous loss and degradation of grassland habitats has been observed across Europe that is mainly attributable to agricultural intensification and land abandonment. Particularly insects have suffered from the loss of grassland habitats due to land-use change and the decrease in habitat quality, either due to an increase in livestock density, higher mowing frequency, and an increase in nitrogen fertilization, or by abandonment. However, only a few studies have used nationwide datasets to analyse the effects of land cover and land-use intensity on insects. It further remains largely unexplored how these effects are modulated by species traits, i.e. habitat specialisation and mobility. Using nationwide butterfly data originating from the German Butterfly Monitoring Scheme, we investigated the effect of three indicators related to land cover and agricultural land-use intensity on species richness as well as trait composition of butterfly communities. Based on agricultural census data at the municipality scale, we calculated the share of permanent grasslands (measure of habitat availability), the total livestock density (proxy for organic fertilization) and the livestock density of domestic herbivores (proxy for management intensity in grasslands) within a 2 km buffer surrounding each butterfly transect. To analyse the relationships between butterflies and indicators of land cover and land-use intensity, we applied generalised linear mixed effect models. We found a negative relationship between butterfly species richness and the livestock density of domestic herbivores. Further, the ratio of butterfly generalist to specialist species shifted towards generalists and the size of butterflies increased with higher herbivore livestock density, indicating a shift in communities towards mobile habitat generalists. Our results are in accordance with previous studies carried out across smaller geographic extents, highlighting the importance of low herbivore livestock densities to halt the loss of pollinating insects and safeguard biodiversity and associated ecosystem services in agricultural landscapes. We here demonstrate that indicators based on livestock distribution data at the municipality scale can provide insights into processes and spatial diversity patterns of butterflies at the national level. Further, we highlight potentials and limitations of using agricultural census data to quantify and assess effects of land cover and land-use intensity on butterflies, and make recommendations for further research needs.

4.
Trends Ecol Evol ; 36(12): 1067-1070, 2021 12.
Article in English | MEDLINE | ID: mdl-34563404

ABSTRACT

Reversing the decline of biodiversity in European agricultural landscapes is urgent. We suggest eight measures addressing politics, economics, and civil society to instigate transformative changes in agricultural landscapes. We emphasize the need for a well-informed society and political measures promoting sustainable farming by combining food production and biodiversity conservation.


Subject(s)
Biodiversity , Conservation of Natural Resources , Agriculture
5.
Ecology ; 100(12): e02861, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31380568

ABSTRACT

Habitat destruction is the single greatest anthropogenic threat to biodiversity. Decades of research on this issue have led to the accumulation of hundreds of data sets comparing species assemblages in larger, intact, habitats to smaller, more fragmented, habitats. Despite this, little synthesis or consensus has been achieved, primarily because of non-standardized sampling methodology and analyses of notoriously scale-dependent response variables (i.e., species richness). To be able to compare and contrast the results of habitat fragmentation on species' assemblages, it is necessary to have the underlying data on species abundances and sampling intensity, so that standardization can be achieved. To accomplish this, we systematically searched the literature for studies where abundances of species in assemblages (of any taxa) were sampled from many habitat patches that varied in size. From these, we extracted data from several studies, and contacted authors of studies where appropriate data were collected but not published, giving us 117 studies that compared species assemblages among habitat fragments that varied in area. Less than one-half (41) of studies came from tropical forests of Central and South America, but there were many studies from temperate forests and grasslands from all continents except Antarctica. Fifty-four of the studies were on invertebrates (mostly insects), but there were several studies on plants (15), birds (16), mammals (19), and reptiles and amphibians (13). We also collected qualitative information on the length of time since fragmentation. With data on total and relative abundances (and identities) of species, sampling effort, and affiliated meta-data about the study sites, these data can be used to more definitively test hypotheses about the role of habitat fragmentation in altering patterns of biodiversity. There are no copyright restrictions. Please cite this data paper and the associated Dryad data set if the data are used in publications.

6.
Ambio ; 45(8): 872-884, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27240661

ABSTRACT

Whilst life cycle assessment (LCA) boundaries are expanded to account for negative indirect consequences of bioenergy such as indirect land use change (ILUC), ecosystem services such as water purification sometimes delivered by perennial bioenergy crops are typically neglected in LCA studies. Consequential LCA was applied to evaluate the significance of nutrient interception and retention on the environmental balance of unfertilised energy willow planted on 50-m riparian buffer strips and drainage filtration zones in the Skåne region of Sweden. Excluding possible ILUC effects and considering oil heat substitution, strategically planted filter willow can achieve net global warming potential (GWP) and eutrophication potential (EP) savings of up to 11.9 Mg CO2e and 47 kg PO4e ha-1 year-1, respectively, compared with a GWP saving of 14.8 Mg CO2e ha-1 year-1 and an EP increase of 7 kg PO4e ha-1 year-1 for fertilised willow. Planting willow on appropriate buffer and filter zones throughout Skåne could avoid 626 Mg year-1 PO4e nutrient loading to waters.


Subject(s)
Biofuels , Conservation of Natural Resources/methods , Ecosystem , Global Warming/prevention & control , Renewable Energy , Salix/growth & development , Water Purification/methods , Crops, Agricultural/growth & development , Eutrophication , Greenhouse Effect , Sweden
7.
Trends Ecol Evol ; 24(12): 686-93, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19712994

ABSTRACT

Climate change and biological invasions are key processes affecting global biodiversity, yet their effects have usually been considered separately. Here, we emphasise that global warming has enabled alien species to expand into regions in which they previously could not survive and reproduce. Based on a review of climate-mediated biological invasions of plants, invertebrates, fishes and birds, we discuss the ways in which climate change influences biological invasions. We emphasise the role of alien species in a more dynamic context of shifting species' ranges and changing communities. Under these circumstances, management practices regarding the occurrence of 'new' species could range from complete eradication to tolerance and even consideration of the 'new' species as an enrichment of local biodiversity and key elements to maintain ecosystem services.


Subject(s)
Adaptation, Physiological , Biodiversity , Global Warming , Animals , Plants , Risk Factors
8.
Conserv Biol ; 20(4): 1150-60, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16922231

ABSTRACT

Seminatural grasslands in Europe are susceptible to habitat destruction and fragmentation that result in negative effects on biodiversity because of increased isolation and area effects on extinction rate. However even small habitatpatches of seminatural grasslands might be of value for conservation and restoration of species richness in a landscape with a long history of management, which has been argued to lead to high species richness. We tested whether ant communities have been negatively affected by habitat loss and increased isolation of seminatural grasslands during the twentieth century. We examined species richness and community composition in seminatural grasslands of different size in a mosaic landscape in Central Sweden. Grasslands managed continuously over centuries harbored species-rich and ecologically diverse ant communities. Grassland remnant size had no effect on ant species richness. Small grassland remnants did not harbor a nested subset of the ant species of larger habitats. Community composition of ants was mainly affected by habitat conditions. Our results suggest that the abandonment of traditional land use and the encroachment of trees, rather than the effects of fragmentation, are important for species composition in seminatural grasslands. Our results highlight the importance of considering land-use continuity and dispersal ability of thefocal organisms when examining the effects of habitat loss and fragmentation on biodiversity. Landscape history should be considered in conservation programs focusing on effects of land-use change.


Subject(s)
Ants/physiology , Biodiversity , Conservation of Natural Resources , Animals , Environment , Geography , Poaceae , Population Dynamics , Sweden
9.
Oecologia ; 142(3): 458-64, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15490244

ABSTRACT

We studied the response of carabid species richness and density to landscape simplification (measured as percentage cover of non-crop habitat surrounding each study site) in 36 wheat fields using pitfall traps. Carabids were divided to trophic groups following the literature. The number of species from different trophic groups declined with increasing landscape simplification in the order: carnivores > phytophages > omnivores. Density compensation of both carnivores and phytophages suggests that species decline is caused by the loss of specific resources rather than by an overall reduction in food availability. Increasing evenness indicates that a greater share of phytophagous species contributes to density compensation at poorer sites. A comparison with data from complementing studies shows that marked differences in species numbers (carnivores > omnivores > phytophages) are due to a different sensitivity of trophic groups to agricultural management. Since our findings seem to be partly due to increasing sensitivity to landscape changes with trophic rank, and partly to decreasing sensitivity of depauperate communities to local environmental stress, species loss can best be explained by the co-action of factors at local and regional scales. Species richness decline might significantly alter the role of carabids as biocontrol agents.


Subject(s)
Adaptation, Physiological , Coleoptera/physiology , Agriculture , Animals , Environment , Germany , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...